Sequence and Series MCQs

Sequence and Series MCQs

Sequence and Series - Multiple Choice Questions

Instructions: This quiz contains 55 multiple-choice questions on sequence and series. Click the "Show Answers" button to highlight the correct answers in yellow.

01What is the nth term of arithmetic progression?
(A) a + (n-1)d    (B) arn-1    (C) a + nd    (D) arn
02The sum of first n natural numbers is:
(A) n(n-1)/2    (B) n(n+1)/2    (C) n²    (D) 2n
03In a GP, if a = 2 and r = 3, what is the 5th term?
(A) 54    (B) 108    (C) 162    (D) 486
04The sum of infinite GP 1 + 1/2 + 1/4 + 1/8 + ... is:
(A) 1    (B) 1.5    (C) 2    (D) ∞
05If 2, x, 18 are in GP, then x = ?
(A) 6    (B) 6    (C) 9    (D) 12
06The arithmetic mean between 4 and 16 is:
(A) 8    (B) 10    (C) 12    (D) 14
07Sum of first n terms of AP is given by:
(A) n/2[2a + (n-1)d]    (B) n/2[2a + (n-1)d]    (C) n/2[a + l]    (D) Both B and C
08If a, b, c are in AP, then:
(A) a + c = b    (B) 2b = a + c    (C) b² = ac    (D) 2a = b + c
09The sequence 1, 4, 9, 16, 25,... is:
(A) AP    (B) Sequence of squares    (C) GP    (D) Harmonic progression
10Sum of the series 1 + 3 + 5 + ... + 99 is:
(A) 2500    (B) 2500    (C) 2550    (D) 2600
11If a, b, c are in GP, then:
(A) a + c = 2b    (B) b² = ac    (C) 2b = a + c    (D) b = √(a+c)
12The geometric mean between 4 and 9 is:
(A) 6    (B) 6    (C) 6.5    (D) 7
13Sum of infinite GP exists only when:
(A) r > 1    (B) r < -1    (C) |r| < 1    (D) r = 1
14The 10th term of AP: 3, 7, 11, 15,... is:
(A) 35    (B) 39    (C) 43    (D) 47
15If sum of n terms of AP is n², then its common difference is:
(A) 1    (B) 2    (C) 3    (D) 4
16The sequence 2, 6, 18, 54,... is:
(A) AP with d=4    (B) GP with r=3    (C) AP with d=3    (D) GP with r=2
17Sum of first 100 even natural numbers is:
(A) 5050    (B) 10100    (C) 10000    (D) 10200
18If 5th term of AP is 17 and 9th term is 33, then common difference is:
(A) 3    (B) 4    (C) 5    (D) 6
19The sum of series 1² + 2² + 3² + ... + n² is:
(A) n(n+1)/2    (B) n(n+1)(2n+1)/6    (C) [n(n+1)/2]²    (D) n(n+1)(n+2)/6
20If a, b, c are in HP, then:
(A) 2/b = 1/a + 1/c    (B) b = 2ac/(a+c)    (C) a, b, c are in AP    (D) Both A and B
21The sum of series 1 + 2 + 3 + ... + n is 55, then n = ?
(A) 9    (B) 10    (C) 11    (D) 12
22Which term of AP 7, 12, 17,... is 87?
(A) 15th    (B) 17th    (C) 19th    (D) 21st
23The sum of cubes of first n natural numbers is:
(A) n(n+1)(2n+1)/6    (B) [n(n+1)/2]²    (C) n²(n+1)²/4    (D) n(n+1)(n+2)/6
24If sum of n terms of AP is 3n² + 5n, then its common difference is:
(A) 3    (B) 6    (C) 5    (D) 8
25The sequence 1/2, 1/4, 1/8, 1/16,... is:
(A) AP    (B) GP with r=1/2    (C) HP    (D) GP with r=2
26Sum of the series 5 + 10 + 15 + ... + 100 is:
(A) 1000    (B) 1050    (C) 1100    (D) 1150
27If 4, x, 9 are in GP, then x = ?
(A) 6    (B) 6    (C) 13/2    (D) 36
28The arithmetic mean of first n natural numbers is:
(A) n/2    (B) (n+1)/2    (C) n(n+1)/2    (D) n
29Which term of GP 2, 6, 18,... is 4374?
(A) 6th    (B) 8th    (C) 10th    (D) 12th
30Sum of first n odd natural numbers is:
(A) n    (B) n²    (C) 2n    (D) n(n+1)
31If a, b, c are in AP, then (a-c)² = ?
(A) 4(b² - ac)    (B) 4(b² - ac)    (C) 2(b² - ac)    (D) b² - 4ac
32The sum of series 1×2 + 2×3 + 3×4 + ... + n(n+1) is:
(A) n(n+1)(n+2)/2    (B) n(n+1)(n+2)/3    (C) n(n+1)(2n+1)/6    (D) [n(n+1)/2]²
33If 5, 8, 11,... is an AP, then its 15th term is:
(A) 42    (B) 47    (C) 52    (D) 57
34The sum of infinite series 9 + 3 + 1 + 1/3 + ... is:
(A) 12    (B) 13.5    (C) 15    (D) 18
35If sum of n terms of AP is 2n² + 3n, then first term is:
(A) 2    (B) 5    (C) 7    (D) 9
36The harmonic mean between 2 and 8 is:
(A) 4    (B) 3.2    (C) 5    (D) 6
37Sum of the series 1³ + 2³ + 3³ + ... + 10³ is:
(A) 2500    (B) 3025    (C) 3600    (D) 4225
38If a, b, c are in GP, then log a, log b, log c are in:
(A) AP    (B) AP    (C) HP    (D) GP
39The sum of series 1 + (1+2) + (1+2+3) + ... to n terms is:
(A) n(n+1)(n+2)/6    (B) n(n+1)(n+2)/6    (C) n(n+1)(2n+1)/6    (D) [n(n+1)/2]²
40If 3rd term of GP is 4 and 6th term is 32, then common ratio is:
(A) 2    (B) 2    (C) 3    (D) 4
41Sum of first 20 terms of AP: 1, 4, 7, 10,... is:
(A) 590    (B) 590    (C) 600    (D) 610
42The geometric mean of 4 and 16 is:
(A) 8    (B) 8    (C) 10    (D) 12
43If a, b, c are in AP, then 1/bc, 1/ca, 1/ab are in:
(A) AP    (B) HP    (C) GP    (D) None
44Sum of the series 1² + 3² + 5² + ... + (2n-1)² is:
(A) n(2n-1)(2n+1)/3    (B) n(2n-1)(2n+1)/3    (C) n(n+1)(2n+1)/6    (D) [n(n+1)/2]²
45The 8th term of GP 1/2, 1/4, 1/8,... is:
(A) 1/64    (B) 1/256    (C) 1/512    (D) 1/1024
46If sum of n terms of AP is n(3n+1), then 25th term is:
(A) 148    (B) 148    (C) 150    (D) 152
47The sequence 1, 3, 6, 10, 15,... represents:
(A) Square numbers    (B) Triangular numbers    (C) Cubic numbers    (D) Prime numbers
48Sum of the series 1×3 + 3×5 + 5×7 + ... to n terms is:
(A) n(4n²+6n-1)/3    (B) n(4n²+6n-1)/3    (C) n(n+1)(n+2)/3    (D) n(2n+1)(2n+3)/3
49If 4th term of AP is 14 and 12th term is 46, then first term is:
(A) 2    (B) 2    (C) 4    (D) 6
50The sum of series 1/1×2 + 1/2×3 + 1/3×4 + ... + 1/n(n+1) is:
(A) 1/(n+1)    (B) n/(n+1)    (C) (n-1)/n    (D) 1/n
51If a, b, c are in GP, then a², b², c² are in:
(A) AP    (B) GP    (C) HP    (D) None
52Sum of first 15 multiples of 8 is:
(A) 900    (B) 960    (C) 1020    (D) 1080
53The arithmetic mean of numbers 1, 2, 3, ..., n is 10, then n = ?
(A) 18    (B) 19    (C) 20    (D) 21
54If sum of three numbers in AP is 15 and their product is 80, then numbers are:
(A) 2, 5, 8    (B) 2, 5, 8    (C) 3, 5, 7    (D) 4, 5, 6
55The sum of infinite GP 0.9 + 0.09 + 0.009 + ... is:
(A) 0.99    (B) 1    (C) 1.1    (D) 1.11