Matrices and Determinants MCQs

Matrices and Determinants MCQs

Matrices and Determinants - Multiple Choice Questions

Instructions: This quiz contains 50 multiple-choice questions on matrices and determinants. Click the "Show Answers" button to highlight the correct answers in yellow.

01If A is a 3×3 matrix and |A| = 5, what is |3A|?
(A) 5    (B) 15    (C) 45    (D) 135
02What is the determinant of an identity matrix of order 3?
(A) 1    (B) 0    (C) 3    (D) -1
03If A and B are square matrices of same order, then (AB)' = ?
(A) A'B'    (B) B'A'    (C) AB    (D) BA
04What is the inverse of a matrix A?
(A) -A    (B) A²    (C) adj(A)/|A|    (D) A/|A|
05If A is a symmetric matrix, then:
(A) A = -A    (B) A = A'    (C) A = -A'    (D) AA' = I
06The determinant of a singular matrix is:
(A) 1    (B) 0    (C) -1    (D) 2
07If A = [aij]2×2 where aij = i+j, then A = ?
(A) [1 2; 2 3]    (B) [2 3; 3 4]    (C) [1 2; 3 4]    (D) [2 3; 4 5]
08For matrix multiplication AB to be defined:
(A) A and B must be square matrices    (B) Columns of A = Rows of B    (C) Rows of A = Columns of B    (D) A and B must have same order
09If A is a square matrix, then A + A' is:
(A) Skew-symmetric    (B) Symmetric    (C) Diagonal    (D) Zero matrix
10The determinant of [1 2; 3 4] is:
(A) 2    (B) -2    (C) -2    (D) 10
11If A is invertible, then (A-1)-1 = ?
(A) A'    (B) A    (C) I    (D) adj(A)
12Cramer's rule is used to solve:
(A) Differential equations    (B) Integration problems    (C) System of linear equations    (D) Eigenvalue problems
13If |A| = 0, then A is called:
(A) Identity matrix    (B) Non-singular matrix    (C) Singular matrix    (D) Scalar matrix
14The trace of a matrix is the sum of its:
(A) All elements    (B) Diagonal elements    (C) First row elements    (D) First column elements
15If A is a 3×3 matrix with |A| = 7, then |adj A| = ?
(A) 7    (B) 49    (C) 49    (D) 343
16A diagonal matrix where all diagonal elements are equal is called:
(A) Identity matrix    (B) Scalar matrix    (C) Zero matrix    (D) Symmetric matrix
17If A and B are matrices of order m×n and n×p respectively, then order of AB is:
(A) n×p    (B) m×n    (C) m×p    (D) n×m
18The matrix [0 2; -2 0] is an example of:
(A) Skew-symmetric matrix    (B) Symmetric matrix    (C) Diagonal matrix    (D) Identity matrix
19For any square matrix A, A(adj A) = ?
(A) A    (B) adj A    (C) |A|I    (D) I
20If A is a square matrix of order 3 and |A| = 4, then |2A| = ?
(A) 8    (B) 16    (C) 32    (D) 64
21The determinant of an orthogonal matrix is:
(A) 0    (B) 1    (C) ±1    (D) 2
22If A is a square matrix such that A² = A, then A is called:
(A) Nilpotent matrix    (B) Idempotent matrix    (C) Involutory matrix    (D) Orthogonal matrix
23The system of equations AX = B has a unique solution if:
(A) |A| = 0    (B) |A| ≠ 0    (C) A is singular    (D) B = 0
24If A is a square matrix and A + A' = 0, then A is:
(A) Skew-symmetric    (B) Symmetric    (C) Diagonal    (D) Identity
25The determinant of a triangular matrix equals:
(A) Sum of diagonal elements    (B) Product of diagonal elements    (C) 0    (D) 1
26If A and B are invertible matrices, then (AB)-1 = ?
(A) A-1B-1    (B) B-1A-1    (C) AB    (D) BA
27The rank of a non-singular square matrix of order n is:
(A) 0    (B) 1    (C) n    (D) n-1
28If A is a 2×2 matrix with |A| = 6, then |3A| = ?
(A) 6    (B) 18    (C) 54    (D) 36
29The matrix equation AX = 0 has non-trivial solution if:
(A) |A| > 0    (B) |A| = 0    (C) |A| < 0    (D) A is identity matrix
30If A is a square matrix, then AA' is always:
(A) Skew-symmetric    (B) Symmetric    (C) Diagonal    (D) Zero matrix
31The determinant of [cosθ -sinθ; sinθ cosθ] is:
(A) 0    (B) sin²θ    (C) cos²θ    (D) 1
32If A is a 3×3 matrix and |A| = 2, then |A-1| = ?
(A) 2    (B) 1/2    (C) -2    (D) -1/2
33A matrix with all elements zero is called:
(A) Identity matrix    (B) Diagonal matrix    (C) Zero matrix    (D) Scalar matrix
34If A is a square matrix and A² = I, then A is called:
(A) Idempotent    (B) Involutory    (C) Nilpotent    (D) Orthogonal
35The determinant of a matrix remains unchanged if:
(A) Rows and columns are interchanged    (B) A row is multiplied by a scalar    (C) A row is added to another row    (D) Two rows are interchanged
36If A is a square matrix of order n, then |kA| = ?
(A) k|A|    (B) kn|A|    (C) nk|A|    (D) |A|
37The inverse of a diagonal matrix is:
(A) Identity matrix    (B) Diagonal matrix with reciprocals    (C) Zero matrix    (D) Same matrix
38If A is symmetric and B is skew-symmetric, then AB + BA is:
(A) Symmetric    (B) Skew-symmetric    (C) Diagonal    (D) Zero matrix
39The number of all possible matrices of order 2×3 with each entry 0 or 1 is:
(A) 12    (B) 36    (C) 64    (D) 81
40If A is a square matrix, then A - A' is:
(A) Symmetric    (B) Skew-symmetric    (C) Diagonal    (D) Zero matrix
41The determinant of an upper triangular matrix is the product of:
(A) All elements    (B) Diagonal elements    (C) First row elements    (D) First column elements
42If A and B are square matrices of same order, then tr(A+B) = ?
(A) tr(A) + tr(B)    (B) tr(A) - tr(B)    (C) tr(A)tr(B)    (D) tr(AB)
43A square matrix A is called orthogonal if:
(A) A = A'    (B) A = -A'    (C) AA' = I    (D) A² = I
44If A is a 3×3 matrix with |A| = 4, then |3A| = ?
(A) 12    (B) 36    (C) 108    (D) 64
45The system of equations x + y = 5, 2x + 2y = 10 has:
(A) Unique solution    (B) Infinitely many solutions    (C) No solution    (D) Two solutions
46If A is a square matrix and A³ = 0, then A is called:
(A) Idempotent    (B) Nilpotent    (C) Involutory    (D) Orthogonal
47The determinant of a matrix changes sign if:
(A) A row is multiplied by a scalar    (B) A row is added to another row    (C) Two rows are interchanged    (D) A row is divided by a scalar
48If A is a square matrix, then A + A' is always:
(A) Skew-symmetric    (B) Symmetric    (C) Diagonal    (D) Zero matrix
49The inverse of a symmetric matrix is:
(A) Skew-symmetric    (B) Symmetric    (C) Diagonal    (D) Not defined
50If A is a square matrix of order n, then |adj A| = ?
(A) |A|    (B) |A|n    (C) |A|n-1    (D) n|A|