Mathematical Induction and Binomial Theorem MCQs

Mathematical Induction and Binomial Theorem MCQs

Mathematical Induction and Binomial Theorem - Multiple Choice Questions

Instructions: This quiz contains 55 multiple-choice questions on mathematical induction and binomial theorem. Click the "Show Answers" button to highlight the correct answers in yellow.

01The first step in mathematical induction is called:
(A) Base case    (B) Inductive step    (C) Hypothesis    (D) Conclusion
02The general term in the binomial expansion of (a+b)n is:
(A) nCr ar bn    (B) nCr an-r br    (C) nCr ar bn-r    (D) nCr an br
03In mathematical induction, we assume P(k) is true for some k ∈ N. This is called:
(A) Base case    (B) Inductive hypothesis    (C) Inductive step    (D) Conclusion
04The middle term in the expansion of (x + y)8 is:
(A) 4th term    (B) 5th term    (C) 6th term    (D) 4th and 5th terms
05If P(n): 1 + 2 + 3 + ... + n = n(n+1)/2, then P(1) is:
(A) 1 = 1    (B) 1 = 1(2)/2    (C) 1 = 1(1)/2    (D) 1 = 2/2
06The coefficient of x5 in (1+x)8 is:
(A) 8    (B) 56    (C) 70    (D) 28
07Mathematical induction is used to prove statements about:
(A) Real numbers    (B) Natural numbers    (C) Complex numbers    (D) All numbers
08The number of terms in the expansion of (a+b)n is:
(A) n    (B) n+1    (C) n-1    (D) 2n
09In the inductive step of mathematical induction, we prove:
(A) P(1) is true    (B) P(k) ⇒ P(k+1)    (C) P(n) is true for all n    (D) P(k) is true
10The term independent of x in (x + 1/x)6 is:
(A) 6th term    (B) 4th term    (C) 3rd term    (D) 2nd term
11Which of the following can be proved by mathematical induction?
(A) 2n > n for all n ∈ N    (B) 2n > n for all n ∈ N    (C) √2 is irrational    (D) There are infinite primes
12The coefficient of x3 in (2-x)5 is:
(A) -40    (B) -40    (C) 40    (D) -80
13The statement "P(n) is true for all n ∈ N" is called:
(A) Base case    (B) Inductive hypothesis    (C) Conclusion    (D) Assumption
14The greatest coefficient in the expansion of (1+x)10 is:
(A) 10C4    (B) 10C5    (C) 10C6    (D) 10C3
15If P(n): n2 + n is even, then P(1) is:
(A) 1 + 1 = 2 (even)    (B) 1 + 1 = 2 (even)    (C) 1² + 1 = 2 (even)    (D) 1² + 1 = 2 (even)
16The expansion of (1-x)-1 is:
(A) 1 + x + x² + x³ + ...    (B) 1 + x + x² + x³ + ...    (C) 1 - x + x² - x³ + ...    (D) 1 - x + x² - x³ + ...
17In strong mathematical induction, we assume:
(A) P(k) is true    (B) P(1), P(2), ..., P(k) are all true    (C) P(n) is true for all n    (D) P(k+1) is true
18The coefficient of x4 in (1+2x)7 is:
(A) 35    (B) 560    (C) 280    (D) 1120
19Which step is crucial in mathematical induction?
(A) Both base case and inductive step    (B) Only base case    (C) Only inductive step    (D) Neither
20The general term in (x² - 1/x)9 is:
(A) 9Cr x18-2r (-1/x)r    (B) 9Cr x18-3r (-1)r    (C) 9Cr x18-2r    (D) 9Cr x9-r (-1)r
21If P(n): 32n - 1 is divisible by 8, then P(1) is:
(A) 3² - 1 = 8 (divisible by 8)    (B) 3² - 1 = 8 (divisible by 8)    (C) 3 - 1 = 2    (D) 9 - 1 = 8
22The term containing x10 in (x² + 1/x)12 is:
(A) 3rd term    (B) 5th term    (C) 7th term    (D) 9th term
23Mathematical induction was first used by:
(A) Euclid    (B) Francesco Maurolico    (C) Pascal    (D) Newton
24The coefficient of x5 in (1+x)n is 126. Then n = ?
(A) 7    (B) 9    (C) 8    (D) 10
25In the principle of mathematical induction, the statement P(n) is proved for:
(A) n = 1 only    (B) Some particular n    (C) All natural numbers n    (D) Real numbers
26The sum of coefficients in (1+x)n is:
(A) n    (B) 2n    (C) 2n-1    (D) 0
27If P(n): 7n - 3n is divisible by 4, then for P(k+1), we consider:
(A) 7k - 3k    (B) 7k+1 - 3k+1    (C) 7k + 3k    (D) 7k-1 - 3k-1
28The middle term in (x - 1/x)10 is:
(A) -252    (B) -252    (C) 252    (D) -210
29Which of the following cannot be proved by mathematical induction?
(A) Sum of first n natural numbers    (B) 2n > n    (C) The area of a circle is ฯ€r²    (D) n! > 2n for n ≥ 4
30The coefficient of x3 in (1+2x+3x²)5 is:
(A) 120    (B) 320    (C) 240    (D) 160
31In mathematical induction, if P(1) is true and P(k) ⇒ P(k+1), then:
(A) P(2) is true    (B) P(3) is true    (C) P(n) is true for all n ∈ N    (D) P(k) is true
32The term independent of x in (√x + 1/√x)12 is:
(A) 12C4    (B) 12C6    (C) 12C5    (D) 12C7
33If P(n): n(n+1)(n+2) is divisible by 6, then P(1) is:
(A) 1×2×3 = 6 (divisible by 6)    (B) 1×2×3 = 6 (divisible by 6)    (C) 1+2+3=6    (D) 1×2=2
34The expansion of (1+x)-2 is:
(A) 1 - 2x + 3x² - 4x³ + ...    (B) 1 - 2x + 3x² - 4x³ + ...    (C) 1 + 2x + 3x² + 4x³ + ...    (D) 1 + x + x² + x³ + ...
35The second step in mathematical induction is called:
(A) Base case    (B) Inductive step    (C) Hypothesis    (D) Verification
36The coefficient of x7 in (1+x)11 is equal to coefficient of xr. Then r = ?
(A) 3    (B) 4    (C) 5    (D) 6
37If P(n) is not true for n=1, then:
(A) P(n) may be true for some n    (B) Mathematical induction fails    (C) P(n) is true for all n    (D) Try n=2
38The greatest term in the expansion of (1+3x)8 when x=1/3 is:
(A) 4th term    (B) 5th term    (C) 6th term    (D) 7th term
39In the inductive step, we prove that:
(A) P(1) is true    (B) If P(k) is true, then P(k+1) is true    (C) P(k) is true    (D) P(n) is true
40The sum of coefficients of odd powers of x in (1+x)n is:
(A) 2n    (B) 2n-1    (C) 2n+1    (D) 0
41If P(n): 1² + 2² + ... + n² = n(n+1)(2n+1)/6, then P(k+1) is:
(A) 1²+2²+...+k² = k(k+1)(2k+1)/6    (B) 1²+2²+...+(k+1)² = (k+1)(k+2)(2k+3)/6    (C) k(k+1)(2k+1)/6    (D) (k+1)(k+2)(2k+3)/6
42The coefficient of xn in (1+x)2n is:
(A) 2nCn    (B) 2nCn    (C) nCn    (D) 2nC2n
43Mathematical induction is based on:
(A) The well-ordering principle    (B) The well-ordering principle    (C) Axiom of choice    (D) Completeness axiom
44The term independent of x in (x + 1/x²)15 is:
(A) 15C5    (B) 15C10    (C) 15C15    (D) Does not exist
45If P(1) is true and P(k) ⇒ P(k+1) for all k ≥ 1, then:
(A) P(2) is true    (B) P(100) is true    (C) P(n) is true for all n ∈ N    (D) P(k) is true
46The numerically greatest term in (1+2x)9 when x=3/2 is:
(A) 4th term    (B) 6th term    (C) 7th term    (D) 8th term
47Which of the following is essential in mathematical induction?
(A) Proving P(1) is true    (B) Proving P(2) is true    (C) Proving P(k) is true    (D) Proving P(n) is true
48The coefficient of x4 in (1-x)-3 is:
(A) 15    (B) 15    (C) 10    (D) 20
49If P(n) fails for some n, then:
(A) P(n) is false for all n    (B) The induction proof is invalid    (C) Try strong induction    (D) Change the statement
50The sum of coefficients in (1+x-3x²)5 is:
(A) -1    (B) -1    (C) 1    (D) 0
51In the binomial expansion, nC0 + nC1 + ... + nCn equals:
(A) n!    (B) 2n    (C) 2n-1    (D) n²
52The inductive step proves that the statement is true for:
(A) n = 1    (B) n = k+1 assuming n=k is true    (C) All n    (D) Some particular n
53The coefficient of x5 in (1+x)21 + (1+x)22 + ... + (1+x)30 is:
(A) 31C6 - 21C6    (B) 31C6 - 21C6    (C) 30C5 - 20C5    (D) 31C5 - 21C5
54Mathematical induction can be used to prove inequalities involving:
(A) Real numbers    (B) Natural numbers    (C) Complex numbers    (D) All numbers
55The term independent of x in (1+x)n(1+1/x)n is:
(A) nC0² + nC1² + ... + nCn²    (B) nC0² + nC1² + ... + nCn²    (C) 2nCn    (D) 2n